سونوگرافی فراصوتی
سونوگرافی فراصوتی یکی از روش‌های تشخیص بیماری در پزشکی است. به این روش اکوگرافی، پژواک‌نگاری و صوت‌نگاری نیز گفته می‌شود. این روش بر مبنای امواج فراصوت و برای بررسی بافت‌های زیرجلدی مانند عضلات، مفاصل، تاندون‌ها و اندام‌های داخلی بدن و ضایعات آنها پی ریزی شده‌است. سونوگرافی در حاملگی نیز کاربردهای وسیعی دارد. همچنین امروزه سونوگرافی کاربردهای درمانی نیز دارد.






ریشه لغوی

کلمه سونوگرافی از لفظ لاتین sono به معنی صوت و نیز graphic به معنی شکل و ترسیم گرفته شده و ultrasound از ultra به معنی ماورا و نیز sound به معنی صوت یا صدا گرفته شده‌است.






تاریخچه

در سال ۱۸۷۶ میلادی، فرانسیس گالتون برای اولین بار پی به وجود امواج فراصوت برد. در زمان جنگ جهانی اول کشور انگلستان برای کمک به جلوگیری از غرق شدن کشتی‌هایش توسط زیردریاییهای کشور آلمان در اقیانوس آتلانتیک شمالی دستگاه کشف کننده زیردریایی‌ها به کمک امواج صوتی به نام صوت‌یاب (Sonar) ابداع کرد. این دستگاه امواج فراصوت تولید می‌کرد که در پیدا کردن مسیر کشتیها استفاده می‌شد. این تکنیک در زمان جنگ جهانی دوم تکمیل گردید و بعدها بطور گسترده‌ای در صنعت این کشور برای آشکار سازی شکافها در فلزات و سایر موارد مورد استفاده قرار می‌گرفت. از کاربرد بخصوصی که انعکاس صوت در جنگ و صنعت داشت صوت‌یاب به علم پزشکی وارد شد و تبدیل به یک وسیله تشخیصی بزرگ در علم پزشکی گردید.






سیر تحولی در رشد

نخستین دستگاه تولید کننده امواج فراصوت در پزشکی، در سال ۱۹۳۷ میلادی توسط دوسیک اختراع شد و روی مغز انسان آزمایش شد. اگر چه فراصوت در ابتدا فقط برای مشخص کردن خط وسط مغز بود، اکنون بصورت یک روش تشخیصی و درمانی مهم درآمده و پیشرفت روز به روز انواع نسلهای دستگاه‌های تولید فراصوت، تحولات عظیمی در تشخیص و درمان در علم پزشکی بوجود آورده‌است. اگرچه بر اساس آماری که در سال ۲۰۰۰ گرفته شده اولتراسوند بعلت هزینه پایین‌تر، ایمنی بیشتر، حمل و نقل آسان وامکان ارائه تصاویر زنده بیش‌ترین کاربرد را در مقایسه با سایر روشهای تصویربرداری دارد ولی بر اساس آمار به ترتیب سی. تی‌. اسکن (CT) و ام. آر. آی (MRI) و پس از آن تصویربرداری هسته‌ای به‌ویژه مقطع‌نگاری پوزیترون (PET) بیشترین کاربرد را دارند چراکه سامانه فراصوتی دارای محدودیت‌هایی نیز هست از جمله:

امواج فراصوت قابلیت عبور از استخوان را ندارند. همچنین از گاز و هوا نیز نمی‌توانند عبور کنند و بازتاب پیدا می‌کنند. بنابراین روش ایده‌آلی برای تصویربرداری از سینه، روده و معده نمی‌باشند. گازهای روده‌ای جلوی تصویربرداری از ساختمان‌های داخلی‌تر مثل پانکراس و آئورت را می‌گیرند. دیگراین‌که امواج در بافت‌ها افت کرده و به‌عنوان مثال، این مساله تصویر برداری از قلب افراد چاق را با مشکل مواجه می‌کند.






تعریف امواج فراصوت

امواج فراصوت به شکلی از انرژی از امواج مکانیکی گفته می‌شود که فرکانس آنها بالاتر از حد شنوایی انسان باشد. گوش انسان قادر است امواج بین ۲۰ هرتز تا ۲۰۰۰۰ هرتز را بشنود. هر موج (شنوایی یا فراصوت) یک آشفتگی مکانیکی در یک محیط گاز، مایع و یا جامد است که به بیرون از چشمه صوتی و با سرعتی یکنواخت و معین حرکت می‌کند. در حرکت یا گسیل موج مکانیکی، ماده منتقل نمی‌شود. اگر ارتعاش ذرات در جهت عمود بر انتشار صوت باشد، موج عرضی است که بیشتر در جامدات رخ می‌دهد و در صورتی که ارتعاش در راستای انتشار امواج باشد، موج طولی است. انتشار در بافتهای بدن به صورت امواج طولی است. از این رو در پزشکی با اینگونه امواج (بالای ۲۰٬۰۰۰ hertz) سر و کار داریم. در کاربردهای تصویر برداری پزشکی، امواج فراصوت در رنج فرکانسی ۲ تا ۲۰ مگاهرتز به کار گرفته می‌شوند. فرکانس‌های بالاتر از این میزان کاربردهای تحقیقاتی و آزمایشگاهی دارند.






روشهای تولید امواج فراصوت

روش پیزوالکتریسیته تأثیر متقابل فشار مکانیکی و نیروی الکتریکی را در یک محیط اثر پیزو الکتریسیته می‌گویند. بطور مثال بلورهایی وجود دارند که در اثر فشار مکانیکی، نیروی الکتریکی تولید می‌کنند و برعکس ایجاد اختلاف پتانسیل در دو سوی همین بلور و در همین راستا باعث فشردگی و انبساط آنها می‌شود که ادامه دادن به این فشردگی و انبساط باعث نوسان و تولید امواج می‌شود. مواد (بلورهای) دارای این ویژگی را مواد پیزو الکتریک می‌گویند. اثر پیزو الکتریسیته فقط در بلورهایی که دارای تقارن مرکزی نیستند، وجود دارد. بلور کوارتز از این دسته مواد است و اولین ماده‌ای بود که برای ایجاد امواج فراصوت از آن استفاده می‌شد که اکنون هم استفاده می‌شود.

اگر چه مواد متبلور طبیعی که دارای خاصیت پیزو الکتریسیته باشند، فراوان هستند. ولی در کاربرد امواج فراصوت در پزشکی از کریستالهایی استفاده می‌شود که سرامیکی بوده و بطور مصنوعی تهیه می‌شوند. از نمونه این نوع کریستالها، مخلوطی از زیرکونیت و تیتانیت سرب (Lead zirconat & Lead titanat) است که به شدت دارای خاصیت پیزوالکتریسیته هستند. به این مواد که واسطه‌ای برای تبدیل انرژی الکتریکی به انرژی مکانیکی و بالعکس هستند، مبدل یا ترانسدیوسر (transuscer) می‌گویند. یک ترانسدیوسر فراصوتی بکار می‌رود که علامت الکتریکی را به انرژی فراصوت تبدیل کند که به داخل بافت بدن نفوذ و انرژی فراصوت انعکاس یافته را به علامت الکتریکی تبدیل کند.







روش مگنتو استریکسیون

این خاصیت در مواد فرومغناطیس (مواد دارای دو قطبی‌های مغناطیسی کوچک بطور خود به خود با دو قطبی‌های مجاور خود همخط شوند) تحت تأثیر میدان مغناطیسی بوجود می‌آید. مواد مزبور در این میدانها تغییر طول می‌دهند و بسته به فرکانس (شمارش زنشهای کامل موج در یک ثانیه) جریان متناوب به نوسان در می‌آیند و می‌توانند امواج فراصوت تولید کنند. این مواد در پزشکی کاربرد ندارند و شدت امواج تولید شده به این روش کم است و بیشتر کاربرد آزمایشگاهی دارد.
عملکرد دستگاه‌های تصویربرداری و تشخیص با امواج فراصوت

در سیستم‌های فراصوت، پالس‌های مکانیکی با فرکانسی در محدودهٔ فراصوت، توسط پراب مخصوص منتشر می‌گردد. این پراب‌ها دارای آرایه‌ای از فرستنده‌های فرا صوت می‌باشد. بخشی از امواج منتشر شده در محیط (در اینجا بافت‌های زیستی)، با برخورد به مرزهای دو بافت با چگالی متفاوت، دچار بازتابش (اکو) می‌گردند. میزان این بازتابش وابسته به امپدانس انتشار امواج فراصوت در دو محیط می‌باشد. اساس سیستم‌های تصویربرداری آلتراسوند، تشخیص تاخیرهای سیگنال‌های دریافتی و پالس‌های ارسال شده می‌باشد.

در کاربردهای پزشکی، امواج فراصوت با فرکانس‌هایی در رنج ۱ مگاهرتز الی ۱۸ مگاهرتز، به کار گرفته می‌شود. فرکانس‌های بالا نیاز به فرستنده‌هایی با ابعاد کوچک‌تر داشته و با توجه به کوتاه تر شدن طول موج، امکان دستیابی به رزولوشن بالاتر را فراهم می‌آورد، اما با این وجود، میزان تضعیف سیگنال در محیط انتشار، با افزایش فرکانس، افزایش می‌یابد. به همین دلیل رنج فرکانس معمول ۳ الی ۵ مگاهرتز می‌باشد.

برای تشخیص سرعت سیالات، مانند سرعت جریان خون، می‌توان از اثر داپلی نیز بهره برد. با توجه به اثر دوپلر حرکت سیال موجب ایجاد شیفت فرکانسی در امواج بازتابیده شده می‌شود. میزان این شیفت فرکانس وابسته به اندازه و جهت سرعت می‌باشد.

با افزایش فرکانس، الگوی تابش فرستنده به حالت ایزوتروپیک نزدیک می‌گردد. برای متمرکز نمودن پالس‌های ارسالی در یک راستا و حتی یک نقطه خاص می‌بایست از پراب‌های آرایه فازی، استفاده نمود. این پراب‌ها شامل چندین فرستنده/گیرنده پیزوالکتریک بر روی خود می‌باشند که می‌توان به صورت یک ردیف (یک بعدی) و یا چندین ردیف (دو بعدی) کنار هم چیده شده باشند. در حالت پسیو، می‌توان چیدمان این المان‌ها را به نحوی طراحی نمود که لوب اصلی الگوی تابش آنتن در یک راستای خاص متمرکز گردد.
در حالت اکتیو فاز، با ایجاد تاخیرهای کنترل شده، در پالس‌های ارسالی توسط هر المنت، می‌توان جهت لوب اصلی را نیز بدون تغییر موقعیت مکانیکی فرستنده، تغییر داد. در فرستنده‌های آرایه فازی دو بعدی اکتیو، امکان فوکوس کردن در یک نقطه خاص نیز فراهم می‌آید. این خصوصیت امکان ایجاد تصاویر دو بعدی و سه بعدی را بدون تغییر دادن مکان پراب، فراهم می‌آورد.






کاربرد امواج فراصوت

۱. کاربرد تشخیصی (سونوگرافی)

2. بیماریهای زنان و زایمان (Gynecology) مانند بررسی قلب جنین، اندازه‌گیری قطر سر (سن جنین)، بررسی جایگاه اتصال جفت و محل ناف، تومورهای پستان. 3. بیماریهای مغز و اعصاب(Neurology) مانند بررسی تومور مغزی، خونریزی مغزی به صورت اکوگرام مغزی یا اکوانسفالوگرافی.

4. بیماریهای چشم (ophthalmology) مانند تشخیص اجسام خارجی در درون چشم، تومور عصبی، خونریزی شبکیه، اندازه‌گیری قطر چشم، فاصله عدسی از شبکیه.

5. بیماریهای کبدی (Hepatic) مانند بررسی کیست و آبسه کبدی.

6. بیماری‌های قلبی (cardiology) مانند بررسی اکوکاردیوگرافی.

۷. دندانپزشکی مانند اندازه‌گیری ضخامت بافت نرم در حفره‌های دهانی. و نیز کاربردهای درمانی آن مانند جرم گیری لثه

۸. این امواج به علت اینکه مانند تشعشعات یونیزان عمل نمی‌کنند. بنابراین برای زنان و کودکان بی‌خطر هستند. ۹. همچنین برای تصویربرداری از سینه هااستفاده می‌شود. ۱۰. رزولوشن بالایی از این روش، برای تصویربرداری از بافتهای سطحی و سلولهای نزدیک سطح پوست استفاده می‌شود. کاربرد درمانی (سونوتراپی): ۱. در فیزیوتراپی جهت کاهش درد و التهاب و همچنین انعطاف‌پذیری بافت‌ها از اولترا سوند استفاده می‌گردد.

۲. کاربرد گرمایی 11. تزریق بدون جراحت با جذب امواج فراصوت به‌وسیله بدن بخشی از انرژی آن به گرما تبدیل می‌شود. گرمای موضعی حاصل از جذب امواج فراصوت بهبودی را تسریع می‌کند. قابلیت کشسانی کلاژن (پروتئینی ارتجاعی) را افزایش می‌دهد. کشش در جوشگاه‌های زخم (scars) افزایش می‌دهد و باعث بهبود آنها می‌شود. اگر اسکار به بافتهای زیرین خود چسبیده باشد، باعث آزاد شدن آنها می‌شود. گرمای حاصل از امواج فراصوت با گرمای حاصل از گرمایش متفاوت است.







میکروماساژ مکانیکی

به هنگام فشردگی و انبساط محیط، امواج طولی فراصوتی روی بافت اثر می‌گذارند و باعث جابجایی آب میان بافتی و در نتیجه باعث کاهش ورم (تجمع آب میان بافتی در اثر ضربه به یک محل) می‌شوند.

درمان آسیب تازه و ورم:آسیب تازه معمولاً با ورم همراه است. فراصوت در بسیاری از موارد برای از بین بردن مواد دفعی در اثر ضربه و کاهش خطر چسبندگی بافتها بهم بکار می‌رود.

درمان ورم کهنه یا مزمن: فراصوت چسبندگیهایی که میان ساختمانهای مجاور ممکن است ایجاد شود را می‌شکند.






خطرات فراصوت
جستجو در ویکی‌انبار در ویکی‌انبار پرونده‌هایی دربارهٔ سونوگرافی فراصوتی موجود است.






سوختگی

اگر امواج پیوسته و در یک مکان بدون چرخش بکار روند، در بافت باعث سوختگی می‌شود و باید امواج حرکت داده شوند.






پارگی کروموزومی

استفاده دراز مدت از امواج اولتراسوند با شدت خیلی بالا پارگی در رشته دی ان ای (DNA) را نشان می‌دهد.






ایجاد حفره

یکی از عوامل کاهش انرژی امواج اولتراسوند هنگام گذشتن از بافتهای بدن ایجاد حفره یا کاویتاسیون است. همه محلولها شامل مقدار قابل ملاحظه‌ای حبابهای گاز غیر قابل دیدن هستند و دامنه بزرگ نوسانهای امواج اولتراسوند در داخل محلولها می‌تواند بر روی بافتها تغییرات بیولوژیکی ایجاد کند (پارگی در دیواره یاخته‌ها و از هم گسستن مولکولهای بزرگ).






عایق صوتی

هر وسیله‌ای برای کاهش فشار صوتی با توجه به صدای منبع و گیرنده را عایق صوتی (به انگلیسی: Soundproofing) می‌گویند.

چندین روش اساسی برای کاهش صدا وجود دارد: افزایش فاصله بین منبع و گیرنده، با استفاده از موانع سر و صدا برای منعکس یا جذب انرژی از امواج صوتی است، با استفاده از سازه‌های میرایی مانند تیغه‌های صوتی، و یا با استفاده از عایق‌های صوتی.







فواید استفاده از عایق صوتی

بهبود صدا در یک اتاق (اتاق بدون پژواک)
کاهش نشت صدا به / از اتاق مجاور و یا خارج از منزل
آکوستیک آرام بخش
کاهش سر و صدا
کنترل سر و صدا
محدود کردن سر و صدای ناخواسته


عایق صوتی می‌تواند از امواج صوتی ناخواسته غیر مستقیم مانند سرکوب بازتاب که باعث پژواک جلوگیری کند عایق صوتی می‌تواند انتقال امواج ناخواسته صدای مستقیم از منبع به شنونده غیر ارادی از طریق کاهش استفاده از فاصله و دخالت اشیاء در مسیر صدا مسیر سازد




روشهای ساده عایقکاری صوتی


1. بستن منافذ ورود و خروج هوا. هر منفذی که هوا بتواند از آن عبور کند،صدا را هم می تواندانتقال دهد. کلیه منافذ موجود در سقفها و دیوارهانظیر اطراف جعبه تقسیم های برق، کانالها و داکتها ،سیم ها و هرجایی راکه شیئی از داخل دیوار یا سقف عبور می کند با بتونه یا فوم پلی اورتان درزگیری نمایید.

2. جلوگیری از ایجاد "کانالهای عبور صدا " در دیوارها. هنگام ساخت بناهای جدید ، کلیدهای برق و دریچه های هوا را در داخل دیوارمشترک دو فضا ، پشت به پشت هم قرار ندهید.

3. اجتناب از استفاده از مصالح سخت. زیرا اینگونه مصالح ,صوت را به آسانی ازیک مکان به مکان دیگر انتقال می دهند.

4. استفاده از یک لایه انعطاف پذیرنظیر فوم منبسط شونده ، جهت جدا نمودن لوله ها از غلافها یا سوراخهایی که از آن عبور می کنند.

5. استفاده از عایق صوتی در دیوارهای ساختمانهای جدید جهت جلوگیری ازانتقال صدا بین اتاقهای مجاور. به منظور جلوگیری از انتقال صدای نامطلوب جریان سریع آب به هنگام تخلیه فلاش تانک توالت، لوله های پلاستیکی تخلیه آب را عایق بندی کنید.

6. استفاده از وسایل خانگی آرامتر، حتی اگر گرانتر از موارد مشابه پرصداتر باشند.

7. جدا نمودن تجهیزات صدادار از محلهای استراحت. استفاده از اطاقهای مجزای مجهز به عایق های صوتی می تواند ایده خوبی درطراحی منزل باشد. بکارگیری درهای مجهز به عایق بین کلیه فضاها ، به مقدار قابل ملاحظه ای از انتقال صدا در خانه جلوگیری می کند.

8. استفاده از مصالح جاذب صدا در کفها، دیوارها و سقفها. عایقهای صوتی به مانند موکت می توانند از عبور صدا جلوگیری نمایند. حتی الامکان ازبکارگیری کفپوشهای سخت، مانند سرامیک، بتن و چوب خودداری نمایید.









صوت‌شناسی

صوت‌شناسی یا آکوستیک یکی از شاخه‌های علم فیزیک است و موضوع آن بررسی موج های مکانیکی در گازها ، مایع ها و جامدها ،از جمله نوسان ها ، صدا ، فراصوت و فروصوت است.کاربردهای آکوستیک در بسیاری از جنبه های زندگی امروز دیده می شوند و ساده ترین نمونه آن صنایع صوتی و نیز کنترل نویز (مکانیکی)است.

واژه ی آکوستیک برگرفته از ریشه ی یونانی ακουστικός ، به معنای "برای و از شنوایی" و نیز از ἀκουστός به معنای قابل شنیدن است.






تاریخچه

از نظر اهمیتی که آکوستیک یا علم صدا دارا می‌باشد می‌توان انتظار داشت که این موضوع در تاریخ علوم فیزیک جزو مطالب اساسی به شمار رفته باشد، در صورتی که چنین چیزی نیست، زیرا در قبال تاریخ سایر علوم، تاریخ آکوستیک قسمت از قلم افتاده و مهجوری بیش نیست. یکی از دلایل این مهجوریت تاریخی این است که نظریه اساسی اصلی راجع به انتشار و اخذ صوت از زمانهای بسیار قدیم در تحولات فکر بشری پیدا شده و اسلوب این فکر همان است که امروزه مورد قبول ماست.






تولید صوت

وقتی که به یک جسم جامد ضربه وارد می‌سازیم، تولید صدا می‌کند. تحت بعضی از شرایط صدای حاصل، بگوش انسان خوش آیند و مطبوع است و این در واقع اساس پیدایش علم موسیقی است که سالیان دراز قبل از تاریخ ضبط صوت، موجود بوده است، اما موسیقی، قرنها قبل از نظر علمی مورد تحقیق قرار گیرد، جزو صنایع ظریفه محسوب می‌گردید. این مطلب مورد قبول عموم است که اولین فیلسوف یونانی که مبنای موسیقی را برسی نموده است. فیثاغورث می‌باشد که ۶ قرن قبل از میلاد زندگی می‌کرده است.
1:17 am
معماری‌ها

در رایانه‌های معاصر واحد محاسبه و منطق را به همراه واحد کنترل در یک مدار مجتمع که واحد پردازشی مرکزی (CPU) نامیده می‌شود، جمع نموده‌اند. عموما، حافظه رایانه روی یک مدار مجتمع کوچک نزدیک CPU قرار گرفته. اکثریت قاطع بخش‌های رایانه تشکیل شده‌اند از سامانه‌های فرعی (به عنوان نمونه، منبع تغذیه رایانه) و یا دستگاه‌های ورودی/خروجی.





برخی رایانه‌های بزرگ‌تر چندین CPU و واحد کنترل دارند که بصورت هم‌زمان با یکدیگر درحال کارند. این‌گونه رایانه‌ها بیشتر برای کاربردهای پژوهشی و محاسبات علمی بکار می‌روند.

کارایی رایانه‌ها بنا به تئوری کاملاً درست است. رایانه داده‌ها و دستورالعمل‌ها را از حافظه‌اش واکشی (fetch) می‌کند. دستورالعمل‌ها اجرا می‌شوند، نتایج ذخیره می‌شوند، دستورالعمل بعدی واکشی می‌شود. این رویه تا زمانی که رایانه خاموش شود ادامه پیدا می‌کند. واحد پردازنده مرکزی در رایانه‌های شخصی امروزی مانند پردازنده‌های شرکت ای-ام-دی و شرکت اینتل از معماری موسوم به خط لوله استفاده می‌شود و در زمانی که پردازنده در حال ذخیره نتیجه یک دستور است مرحله اجرای دستور قبلی و مرحله واکشی دستور قبل از آن را آغاز می‌کند. همچنین این رایانه‌ها از سطوح مختلف حافظه نهانگاهی استفاده می‌کنند که در زمان دسترسی به حافظه اصلی صرفه‌جویی کنند.



برنامه‌ها

برنامه رایانه‌ای فهرست‌های بزرگی از دستورالعمل‌ها (احتمالاً به همراه جدول‌هائی از داده) برای اجرا روی رایانه هستند. خیلی از رایانه‌ها حاوی میلیون‌ها دستورالعمل هستند، و بسیاری از این دستورها به تکرار اجرا می‌شوند. یک رایانه شخصی نوین نوعی (درسال ۲۰۰۳) می‌تواند در ثانیه میان ۲ تا ۳ میلیارد دستورالعمل را پیاده نماید. رایانه‌ها این مقدار محاسبه را صرف انجام دستورالعمل‌های پیچیده نمی‌کنند. بیشتر میلیون‌ها دستورالعمل ساده را که توسط اشخاص باهوشی «برنامه نویسان» در کنار یکدیگر چیده شده‌اند را اجرا می‌کنند. برنامه‌نویسان خوب مجموعه‌هایی از دستورالعمل‌ها را توسعه می‌دهند تا یکسری از وظایف عمومی را انجام دهند(برای نمونه، رسم یک نقطه روی صفحه) و سپس آن مجموعه دستورالعمل‌ها را برای دیگر برنامه‌نویسان در دسترس قرار می‌دهند. (اگر مایلید «یک برنامه‌نویس خوب» باشید به این مطلب مراجعه نمایید.)

رایانه‌های امروزه، قادرند چندین برنامه را در آن واحد اجرا نمایند. از این قابلیت به عنوان چندکارگی (multitasking) نام برده می‌شود. در واقع، CPU یک رشته دستورالعمل‌ها را از یک برنامه اجرا می‌کند، سپس پس از یک مقطع ویژه زمانی دستورالعمل‌هایی از یک برنامه دیگر را اجرا می‌کند. این فاصله زمانی اکثرا به‌عنوان یک برش زمانی (time slice) نام برده می‌شود. این ویژگی که CPU زمان اجرا را بین برنامه‌ها تقسیم می‌کند، این توهم را بوجود می‌آورد که رایانه هم‌زمان مشغول اجرای چند برنامه‌است. این شبیه به چگونگی نمایش فریم‌های یک فیلم است، که فریم‌ها با سرعت بالا در حال حرکت هستند و به نظر می‌رسد که صفحه ثابتی تصاویر را نمایش می‌دهد. سیستم‌عامل همان برنامه‌ای است که این اشتراک زمانی را بین برنامه‌های دیگر تعیین می‌کند.





سیستم‌عامل
کامپیوتر همیشه نیاز دارد تا برای بکار انداختنش حداقل یک برنامه روی آن در حال اجرا باشد. تحت عملکردهای عادی این برنامه همان سیستم‌عامل یا OS که مخفف واژه‌های Operating System است. سیستم یا سامانه عامل بر اساس پیشفرض‌ها تصمیم می‌گیرد که کدام برنامه برای انجام چه وظیفه‌ای اجرا شود، چه زمان، از کدام منابع (مثل حافظه، ورودی/خروجی و...) استفاده شود. همچنین سیستم‌عامل یک لایه انتزاعی بین سخت‌افزار و برنامه‌های دیگر که می‌خواهند از سخت‌افزار استفاده کنند، می‌باشد، که این امکان را به برنامه نویسان می‌دهد تا بدون اینکه جزئیات ریز هر قطعه الکترونیکی از سخت‌افزار را بدانند بتوانند برای آن قطعه برنامه‌نویسی نمایند. در گذشته یک اصطلاح متداول بود که گفته می‌شد با تمام این وجود کامپیوترها نمی‌توانند برخی از مسائل را حل کنند که به این مسائل حل نشدنی گفته می‌شود مانند مسائلی که در مسیر حلشان در حلقه بی نهایت می‌افتند. به همین دلیل نیاز است که با کمک روشهای خاص بطور مثال به چند بخش تقسیم نمودن مساله یا روشهای متداول دیگر از رخ دادن این خطا تا حد امکان جلوگیری نمود. از جمله سیستم عامل های امروزی میتوان به مایروسافت ویندوز ، مکینتاش اپل و لینوکس و بی اس دی اشاره کرد.



کاربردهای رایانه
نخستین رایانه‌های رقمی، با قیمت‌های زیاد و حجم بزرگشان، در اصل محاسبات علمی را انجام می‌دادند، انیاک یک رایانهٔ قدیمی ایالات متحده اصولاً طراحی شده تا محاسبات پرتابه‌ای توپخانه و محاسبات مربوط به جدول چگالی نوترونی را انجام دهد. (این محاسبات بین دسامبر ۱۹۴۱ تا ژانویه ۱۹۴۶ روی حجمی بالغ بر یک میلیون کارت پانچ انجام پذیرفت! که این خود طراحی و سپس تصمیم نادرست بکارگرفته شده را نشان می‌دهد) بسیاری از ابررایانه‌های امروزی صرفاً برای کارهای ویژهٔ محاسبات جنگ افزار هسته‌ای استفاده می‌گردد.

نیز که نخستین رایانه استرالیایی بود برای ارزیابی میزان بارندگی در کوه‌های اسنوئی (Snowy)این کشور بکاررفت، این محاسبات در چارچوب یک پروژه عظیم تولید برقابی انجام گرفت.

برخی رایانه‌ها نیز برای انجام رمزگشایی بکارگرفته می‌شد، برای مثال Colossus که در جریان جنگ جهانی دوم ساخته شد، جزو اولین کامپیوترهای برنامه‌پذیر بود(البته ماشین تورینگ کامل نبود). هرچند رایانه‌های بعدی می‌توانستند برنامه‌ریزی شوند تا شطرنج بازی کنند یا تصویر نمایش دهند و سایر کاربردها را نشان دهد.

سیاست‌مداران و شرکت‌های بزرگ نیز رایانه‌های اولیه را برای خودکارسازی بسیاری از مجموعه‌های داده و پردازش کارهایی که قبلا توسط انسان‌ها انجام می‌گرفت، بکار بستند - برای مثال، نگهداری و بروزرسانی حساب‌ها و دارایی‌ها. در موسسات پژوهشی نیز دانشمندان رشته‌های مختلف شروع به استفاده از رایانه برای مقاصدشان نمودند.

کاهش پیوسته قیمت‌های رایانه باعث شد تا سازمان‌های کوچک‌تر نیز بتوانند آن‌ها را در اختیار بگیرند. بازرگانان، سازمان‌ها، و سیاست‌مداران اغلب تعداد زیادی از کامپیوترهای کوچک را برای تکمیل وظایفی که قبلا برای تکمیلشان نیاز به رایانه بزرگ (mainframe) گران قیمت و بزرگ بود، به کار بگیرند. مجموعه‌هایی از رایانه‌های کوچک‌تر در یک محل اغلب به‌عنوان خادم سرا

(server farm) نام برده می‌شود.

با اختراع ریزپردازنده‌ها در دههٔ ۱۹۷۰ این امکان که بتوان رایانه‌هایی بسیار ارزان قیمت را تولید نمود بوجود آمد. رایانه‌های شخصی برای انجام وظایف بسیاری محبوب گشتند، از جمله کتابداری، نوشتن و چاپ مستندات. محاسبات پیش بینی‌ها و کارهای تکراری ریاضی توسط صفحات گسترده (spreadsheet)، ارتباطات توسط پست الکترونیک، و اینترنت. حضور گسترده رایانه‌ها و سفارشی کردن آسانشان باعث شد تا در امورات بسیار دیگری بکارگرفته شوند.

در همان زمان، رایانه‌های کوچک، که معمولاً با یک برنامه ثابت ارائه می‌شدند، راهشان را بسوی کاربردهای دیگری باز می‌نمودند، کاربردهایی چون لوازم خانگی، خودروها، هواپیماها، و ابزار صنعتی. این پردازشگرهای جاسازی شده کنترل رفتارهای آن لوازم را ساده‌تر کردند، همچنین امکان انجام رفتارهای پیچیده را نیز فراهم نمودند (برای نمونه، ترمزهای ضدقفل در خودروها

). با شروع قرن بیست و یکم، اغلب دستگاه‌های الکتریکی، اغلب حالت‌های انتقال نیرو، اغلب خطوط تولید کارخانه‌ها توسط رایانه‌ها کنترل می‌شوند. اکثر مهندسان پیش بینی می‌کنند که این روند همچنان به پیش برود... یکی از کارهایی که می‌توان به‌وسیله رایانه انجام داد برنامه گیرنده ماهواره‌است.

نیز تنها ۴۹۵ دلار قیمت داشت! قیمت آن کامپیوتر نیز ۳٬۰۰۵ دلار بود و IBM در آن زمان توانست ۶۷۱٬۵۳۷ دستگاه از آن را بفروشد.



انواع
رایانه
رایانه‌های توکار (جاسازی شده)
رایانه‌هایی هم وجود دارند که تنها برای کاربردهای خاص طراحی می‌شوند. در ۲۰ سال گذشته، هرچند برخی ابزارهای خانگی که از نمونه‌های قابل ذکر آن می‌توان جعبه‌های بازی‌های ویدئویی را که بعدها در دستگاه‌های دیگری از جمله تلفن همراه، دوربین‌های ضبط ویدئویی، و PDAها و ده‌ها هزار وسیله خانگی، صنعتی، خودروسازی و تمام ابزاری که در درون آنها مدارهایی که نیازهای ماشین تورینگ را مهیا ساخته‌اند، گسترش یافت، را نام برد(اغلب این لوازم برنامه‌هایی را در خود دارند که بصورت ثابت روی ROM تراشه‌هایی که برای تغییر نیاز به تعویض دارند، نگاشته شده‌اند). این رایانه‌ها که در درون ابزارهای با کاربرد ویژه گنجانیده شده‌اند «ریزکنترل‌گرها» یا رایانه‌های توکار" (Embedded Computers) نامیده می‌شوند. بنابراین تعریف این رایانه‌ها به‌عنوان ابزاری که با هدف پردازش اطّلاعات طراحی گردیده محدودیت‌هایی دارد.بیشتر می‌توان آنها را به ماشین‌هایی تشبیه کرد که در یک مجموعه بزرگ‌تر به‌عنوان یک بخش حضور دارند مانند دستگاه‌های تلفن،ماکروفرهاو یاهواپیما که این رایانه‌ها بدون تغییر فیزیکی توسط کاربر می‌توانند برای مقاصد مختلفی بکارگرفته شوند.



رایانه‌های شخصی

اشخاصی که با انواع دیگری از رایانه‌ها ناآشنا هستند از عبارت رایانه برای رجوع به نوع خاصی که رایانه شخصی (PC) نامیده می‌شوند استفاده می‌کنند. رایانه‌ای است که از اجزای الکترونیکی میکرو (ریز)تشکیل شده که جزو کوچکترین و ارزان ترین کامپیوترها محسوب می‌شود و کاربردهای خانگی و اداری دارد شرکت آی‌بی‌ام رایانه شخصی در سال ۱۹۸۱ میلادی به جهان معرفی کرد

اولین کامپیوتر IBM از برخی از ماشین حساب‌های امروزی نیز ضعیف تر است ولی در آن زمان شگفت انگیز بود.کامپیوتر شخصی سی سال پیش دارای حافظه ROM با ظرفیت 40K و حافظه RAM با ظرفیت 64K بود البته کاربر می‌توانست حافظه RAM را تا 256K افزایش دهد. قیمت هر ماژول 64K حافظه والانیوز



سرمایه گذاری
صنعت رايانه همواره صنعتي رو به رشد بوده است چه در حوزه ي سخت افزار چه در حوزه ي نرم افزار، اين صنعت پيوسته مورد توجه سرمايه گذاران بوده است و سرمايه ها را به خود جذب كرده است. آينده ي روشن اين فناوري همواره سرمايه داران را ترغيب مي كند تا روي اين صنعت ‍سرمايه گذاري كنند.
ساعت : 1:17 am | نویسنده : admin | آموزش کامپیوتر | مطلب قبلی
آموزش کامپیوتر | next page | next page